Sunday, 29 January 2017

COOLING SYSTEM


A system, which controls the engine temperature, is known as a cooling system.
NECESSITY OF COOLING SYSTEM
The cooling system is provided in the IC engine for the following reasons:
• The temperature of the burning gases in the engine cylinder reaches up to 1500 to 2000°C, which
is above the melting point of the material of the cylinder body and head of the engine. (Platinum, a
metal which has one of the highest melting points, melts at 1750 °C, iron at 1530°C and
aluminium at 657°C.) Therefore, if the heat is not dissipated, it would result in the failure of the
cylinder material.
• Due to very high temperatures, the film of the lubricating oil will get oxidized, thus producing
carbon deposits on the surface. This will result in piston seizure.
• Due to overheating, large temperature differences may lead to a distortion of the engine
components due to the thermal stresses set up. This makes it necessary for, the temperature
variation to be kept to a minimum.
• Higher temperatures also lower the volumetric efficiency of the engine.
REQUIREMENTS OF EFFICIENT COOLING SYSTEM
The two main requirements of an efficient cooling system are:
1. It must be capable of removing only about 30% of the heat generated in the combustion chamber. Too
much removal of heat lowers the thermal efficiency of the engine.
2. It should remove heat at a fast rate when the engine is hot. During the starting of the engine, the
cooling should be very slow so that the different working parts reach their operating temperatures in a short
time.
TYPES OF COOLING SYSTEM
There are two types of cooling systems:
(i) Air cooling system and
(ii) Water-cooling system.
AIR COOLING SYSTEM
In this type of cooling system, the heat, which is conducted to the outer parts of the engine, is radiated and
conducted away by the stream of air, which is obtained from the atmosphere. In order to have efficient
cooling by means of air, providing fins around the cylinder and cylinder head increases the contact area.
The fins are metallic ridges, which are formed during the casting of the cylinder and cylinder head
The amount of heat carried off by the air-cooling depends upon the following factors:
(i) The total area of the fin surfaces,
(ii) The velocity and amount of the cooling air and
(iii) The temperature of the fins and of the cooling air.
Air-cooling is mostly tractors of less horsepower, motorcycles, scooters, small cars and small aircraft
engines where the forward motion of the machine gives good velocity to cool the engine. Air-cooling is
also provided in some small industrial engines. In this system, individual cylinders are generally employed
to provide ample cooling area by providing fins. A blower is used to provide air.
Advantages of Air Cooled Engines
Air cooled engines have the following advantages:
1. Its design of air-cooled engine is simple.
2. It is lighter in weight than water-cooled engines due to the absence of water jackets, radiator,
circulating pump and the weight of the cooling water.
3. It is cheaper to manufacture.
4. It needs less care and maintenance.
5. This system of cooling is particularly advantageous where there are extreme climatic
conditions in the arctic or where there is scarcity of water as in deserts.
6. No risk of damage from frost, such as cracking of cylinder jackets or radiator water tubes.
WATER COOLING SYSTEM
It serves two purposes in the working of an engine:
AG ENGG 243 lecture 7
2
a) It takes away the excessive heat generated in the engine and saves it from over heating.
b) It keeps the engine at working temperature for efficient and economical working.
This cooling system has four types of systems:
(i) Direct or non-return system,
(ii) Thermo-Syphone system,
(iii) Hopper system and
(iv) Pump/forced circulation system.
Though the present tractor has a forced circulation system, it is still worthwhile to get acquainted with the
other three systems.
Non-Return Water Cooling System
This is suitable for large installations and where plenty of water is available. The water from a storage tank
is directly supplied to the engine cylinder. The hot water is not cooled for reuse but simply discharges. The
low H.P. engine, coupled with the irrigation pump is an example.
Thermo-Syphone Water Cooling System
This system works on the principle that hot water being lighter rises up and the cold water being heavier
goes down. In this system the radiator is placed at a higher level than the engine for the easy flow of water
towards the engine. Heat is conducted to the water jackets from where it is taken away due to convection
by the circulating water. As the water jacket becomes hot, it rises to the top of the radiator. Cold water from
the radiator takes the place of the rising hot water and in this way a circulation of water is set up m the
system. This helps in keeping the engine at working temperature.
Disadvantages of Thermo-Syphone System
1 Rate of circulation is too slow.
2. Circulation commences only when there is a marked difference in temperature.
3. Circulation stops as the level of water falls below the top of the delivery pipe of the radiator. For these
reasons this system has become obsolete and is no more in use.
Hopper Water Cooling System
This also works on the same principle as the thermo-syphone system. In this there is a hopper on a jacket
containing water, which surrounds the engine cylinder. In this system, as soon as water starts boiling, it is
replaced by cold water. An engine fitted with this system cannot run for several hours without it being
refilled with water.
Force Circulation Water Cooling System
This system is similar in construction to the thermo-syphone system except that it makes use of a
centrifugal pump to circulate the water throughout the water jackets and radiator
The water flows from the lower portion of the radiator to the water jacket of the engine through the
centrifugal pump. After the circulation water comes back to the radiator, it loses its heat by the process of
radiation. This system is employed in cars, trucks, tractors, etc.
AG ENGG 243 lecture 7
3
Parts of Liquid Cooling System
The main parts in the water-cooling system are: (i) water pump, (ii) fan, (iii) radiator and pressure cap, (iv)
fan belt (v) water jacket, (vi) thermostat valve, (vii) temperature gauge and (viii) hose pipes.
Water Pump
This is a centrifugal type pump. It is centrally mounted at the front of the cylinder block and is usually
driven by means of a belt. This type of pump consists of the following parts: (i) body or casing, (ii)
impeller (rotor), (iii) shaft, (iv) bearings, or bush, (v) water pump seal and (vi) pulley.
The bottom of the radiator is connected to the suction side of the pump. The power is transmitted to the
pump spindle from a pulley mounted at the end of the crankshaft.
Seals of various designs are incorporated in the pump to prevent loss of coolant from the system.
Fan
The fan is generally mounted on the water pump pulley, although on some engines it is attached directly to
the crankshaft. It serves two purposes in the cooling system of a engine.
(a) It draws atmospheric air through the radiator and thus increases the efficiency of the radiator in
cooling hot water.
(b) It throws fresh air over the outer surface of the engine, which takes away the heat conducted by
the engine parts and thus increases the efficiency of the entire cooling system.
Radiator
The purpose of the radiator is to cool down the water received from the engine. The radiator consists of
three main parts: (i) upper tank, (ii) lower tank and (iii) tubes.
Hot water from the upper tank, which comes from the engine, flows downwards through the tubes. The
heat contained in the hot water is conducted to the copper fins provided around the tubes.
An overflow pipe, connected to the upper1 tank, permits excess water or steam to escape. There are three
types of radiators: (i) gilled tube radiator, (ii) tubular radiator (Fig. b)
and (iii) honey comb or cellular radiator (Fig. c)
Gilled tube radiator:
This is perhaps the oldest type of radiator, although it is still in use. In this, water flows inside the tubes.
Each tube has a large number of annular rings or fins pressed firmly over its outside surface.
Tubular radiator: The only difference between a gilled tubes radiator and a tubular one is that in this case
there are no separate fins for individual tubes. The radiator vertical tubes pass through thin fine copper
sheets which run horizontally.
Honey comb or cellular radiator: The cellular radiator consists of a large number of individual air cells
which are surrounded by water. In this, the clogging of any passage affects only a small parts of the cooling
surface. However, in the tubular radiator, if one tube becomes clogged, the cooling effect of the entire tube
is lost.
Thermostat Valve
It is a kind of check valve which opens and closes with the effect of temperature. It is fitted in the water
outlet of the engine. During the warm-up period, the thermostat is closed and the water pump circulates the
water only throughout the cylinder block and cylinder head. When the normal operating temperature is
Type of radiators
AG ENGG 243 lecture 7
4
reached, the thermostat valve opens and allows hot water to flow towards the radiator (Fig. 8.5a).
Standard thermostats are designed to start opening at 70 to 75°C and they fully open at 82°C. High
temperature thermostats, with permanent anti-freeze solutions (Prestine, Zerex, etc.), start opening at 80 to
90°C and fully open at 92°C.
Types of thermostat
There are three types of thermostats: (i) bellow type, (ii) bimetallic type and (iii) pellet type.
Bellow type valve: Flexible bellows are filled with alcohol or ether. When the bellows is heated, the liquid
vaporises, creating enough pressure to expand the bellows. When the unit is cooled, the gas condenses. The
pressure reduces and the bellows collapse to close the valve.
Bimetallic type valve: This consists of a bimetallic strip. The unequal expansion of two metallic strips
causes the valve to open and allows the water to flow in the radiator.
Pellet type valve: A copper impregnated wax pellet expands when heated and contracts when cooled. The
pellet is connected to the valve through a piston, such that on expansion of the
pellet, it opens the valve. A coil spring closes the valve when the pellet contracts.
PRESSURE COOLING SYSTEM
In the case of the ordinary water-cooling system where the cooling water is subjected to atmospheric
pressure, the water boils at 212°F. But when water is boiled in a closed radiator under high pressure, the
boiling temperature of water increases. The higher water temperature gives more efficient engine
performance and affords additional protection under high altitude and tropical conditions for long hard
driving periods. Therefore, a pressure-type radiator cap is used with the forced circulation cooling system
(Fig. 8.6a). The cap is fitted on the radiator neck with an air tight seal. The pressure-release valve is set to
open at a pressure between 4 and 13 psi. With this increase in pressure, the boiling temperature of water
increases to 243°F (at 4 psi boiling tap 225°F and 13 psi boiling temperature 243°F). Any increase in
pressure is released by the pressure release valve to the atmosphere. On cooling, the vapours will
condense and a partial vacuum will be created which will result in the collapse of the hoses and tubes. To
overcome this problem the pressure release valve is associated with a vacuum valve which opens the
radiator to the atmosphere.
ANTI-FREEZE SOLUTIONS
In order to prevent the water in the cooling system from freezing, some chemical solutions which are
known as anti-freeze solutions are mixed with water. In cold areas, if the engine is kept without this
solution for some time, the water may freeze and expand leading to fractures in the cylinder block, cylinder
head, pipes and/or radiators.
The boiling point of the anti-freeze solution should be as high as that of water. An ideal mixture should
easily dissolve in water, be reasonably cheap and should not deposit any foreign matter in the jacket pipes
and radiator.
No single anti-freeze solution satisfies all these requirements. The materials commonly used are wood
AG ENGG 243 lecture 7
5
alcohol, denatured alcohol, glycerine, ethylene, glycol, propylene glycol, mixtures of alcohol and glycerine
and various mixtures of other chemicals.
SERVICING & CLEANING OF COOLING SYSTEM
For smooth and trouble-free service, the cooling system should be cleaned at periodic intervals to prevent
the accumulation of excessive rust and scale. The commercial cleaning compounds available must be
carefully used in accordance with the manufacturers' instructions.
A general cleaning procedure is outlined below. If a considerable amount of scale and rust has
accumulated, it may not be possible that cleaning alone will remove it. In that case, the radiator and engine
water jackets must be flushed out with special air pressure guns.
Cooling System Cleaning Procedure
It involves the following steps.
1. Drain the system by opening the drain cocks. Prepare a solution of washing soda and water, with a ratio
of 1 kg soda to 10 litres of water. Fill up this solution in the radiator and engine block and run the
engine on idle load for 8 to 10 hours. Drain this solution and flush the system with clean water.
2. In case the scale formulation is bard and cannot be completely removed with washing soda, another
cleaning agent can be prepared with 40 parts of water, 5 parts of commercial hydrochloric acid and 1
part of formaldehyde. This solution is allowed to remain in the system for 2 to 3 hours at normal load.
Afterwards this could be drained and the system flushed with clean water.
3. Pressure flushing: In this the air pressure is used to both agitate and circulate the water through the
cooling system.
(a) Straight flushing: Connect the lead-away hose to the water outlet connection on the engine. Insert the
flushing gun in the hose attached to the water pump inlet connection. Turn on the water until the
water passages are filled and the release the air in short blasts, allowing the water to fill the engine after
such blasts.
(b) Reverse flushing: Before making connections for reverse flushing the thermostat should be removed
from the cooling system. The procedure for this is outlined below:
(i) Radiator: Disconnect the top hose of the radiator from the engine and attach a lead-away hose to the
radiator. Disconnect the bottom of the radiator from water pump and attach the flushing gun. Connect
water and air hoses to the gun. Turn on the water and fill the radiator to the top. Release the air in short
blasts and allows the water to fill the radiator between each blast. Continue the operation until the water
from the lead-away hose is clear, (ii) Engine: Connect the lead-away hose to the inlet of the water pump
and the flushing gun to the water outlet of the pump on the cylinder head. Follow the same procedure.
LUBRICATION SYSTEM
I. C. engine is made of many moving parts. Due to continuous movement of two metallic surfaces over
each other, there is wearing moving parts, generation of heat and loss of power in the engine lubrication of
moving parts is essential to prevent all these harmful effects.
PURPOSE OF LUBRICATION
Lubrication produces the following effects: (a) Reducing friction effect (b) Cooling effect (c) Sealing effect
and (d) Cleaning effect.
(a) Reducing frictional effect: The primary purpose of the lubrication is to reduce friction and wear
between two rubbing surfaces. Two rubbing surfaces always produce friction. The continuous friction
produce heat which causes wearing of parts and loss of power. In order to avoid friction, the contact of two
sliding surfaces must be reduced as far a possible. This can be done by proper lubrication only. Lubrication
forms an oil film between two moving surfaces. Lubrication also reduces noise produced by the movement
of two metal surfaces over each other.
(b) Cooling effect: The heat, generated by piston, cylinder, and bearings is removed by lubrication to a
great extent. Lubrication creates cooling effect on the engine parts.
(c) Sealing effect: The lubricant enters into the gap between the cylinder liner, piston and piston rings.
Thus, it prevents leakage of gases from the engine cylinder.
(d) Cleaning effect: Lubrication keeps the engine clean by removing dirt or carbon from inside of the
engine along with the oil.
Lubrication theory: There are two theories in existence regarding the application of lubricants on a
surface: (i) Fluid film theory and (ii) Boundary layer theory.
AG ENGG 243 lecture 7
6
(i) Fluid film theory: According to this theory, the lubricant is, supposed to act like mass of globules,
rolling in between two surfaces. It produces a rolling effect, which reduces friction.
(ii) Boundary layer theory: According to this theory, the lubricant is soaked in rubbing surfaces and forms
oily surface over it. Thus the sliding surfaces are kept apart from each other, thereby reducing friction.
TYPES OF LUBRICANTS
Lubricants are obtained from animal fat, vegetables and minerals Lubricants made of animal fat, does not
stand much heat. It becomes waxy and gummy which is not very suitable for machines.
Vegetable lubricants are obtained from seeds, fruits and plants. Cottonseed oil, olive oil, linseed oil and
castor oil are used as lubricant in small Simple machines.
Mineral lubricants are most popular for engines and machines. It is obtained from crude petroleum found in
nature. Petroleum lubricants are less expensive and suitable for internal combustion engines. A good
lubricant should have the following qualities:
1. It should have sufficient viscosity to keep the rubbing surfaces apart
2. It should remain stable under changing temperatures.
3. It should keep lubricated pans clean.
4. It should not corrode metallic surfaces.
ENGINE LUBRICATING SYSTEM
The lubricating system of an engine is an arrangement of mechanism and devices which maintains supply
of lubricating oil to the rubbing surface of an engine at correct pressure and temperature.
The parts which require lubrication are: (i) cylinder walls and piston (ii) piston pin (iii) crankshaft and
connecting rod bearings (iv) camshaft bearings (v) valves and valve operating mechanism (vi) cooling fan
(vii) water pump and (viii) ignition mechanism.
There are three common systems of lubrication used on stationary engines, tractor engines and
automobiles:
(i) Splash system (ii) Forced feed system and (iii) Combination of splash and forced feed system.
SPLASH SYSTEM
In this system, there is an oil trough, provided below the connecting rod. Oil is maintained at a uniform
level in the oil trough. This is obtained by maintaining a continuous flow of oil from the oil sump or
reservoir into a splash pan, which has a depression or a trough like arrangement under each connecting rod.
This pan receives its oil supply from the oil sump either by means of a gear pump or by gravity. A dipper is
provided at the lower end of the connecting rod. This dipper dips into to oil trough and splashes oil out of
the pan. The splashing action of oil maintains a fog or mist of oil that drenches the inner parts of the engine
such as bearings, cylinder walls, pistons, piston pins, timing gears etc.
This system is usually used on single cylinder engine with closes crankcase. For effective functioning of
the engine, proper level of oil maintained in the oil pan.
Lubrication depends largely upon the size of oil holes and clearances. This system is very effective if the
oil is clean and undiluted. Its disadvantages are that lubrication is not very uniform and when the rings are
worn, the oil passes the piston into combustion chamber, causing carbon deposition, blue smoke and
spoiling the plugs. There is every possibility that oil may become very thin through crankcase dilution. The
Splash lubrication system
AG ENGG 243 lecture 7
7
worn metal, dust and carbon may be collected in the oil chamber and be carried to different parts of the
engine, causing wear and tear.
FORCED FEED SYSTEM
In this system, the oil is pumped directly lo the crankshaft, connecting rod, piston pin, timing gears and
camshaft of the engine through suitable paths of oil. Usually the oil first enters the main gallery, which may
be a pipe or a channel in the crankcase casting. From this pipe, it goes to each of the main bearings through
holes. From main bearings, it goes to big end bearings of connecting rod through drilled holes in the
crankshaft. From there, it goes to lubricate the walls, pistons and rings. There is separate oil gallery to
lubricate timing gears. Lubricating oil pump is a positive displacement pump, usually gear type or vane'
type. The oil also goes to valve stem and rocker arm shaft under pressure through an oil gallery.
The excess oil comes back from the cylinder head to the crankcase. The pump discharges oil into oil pipes,
oil galleries or ducts, leading different parts of the engine. This system is commonly used on high speed
multi-cylinder engine in tractors, trucks and automobiles.
COMBINATION OF SPLASH AND FORCED FEED SYSTEM In this system, the engine component,
which are subjected to very heavy load are lubricated under forced pressure, such as main bearing
connecting rod bearing and camshaft bearing. The rest of the parts like cylinder liners, cams, tappets etc are
lubricated by splashed oil.
Oil pump: Oil pump is usually a gear type pump, used to force oil into
the oil pipe. The pump is driven by the camshaft of t engine. The lower
end of the pump extends down into the crankcase which is covered with
a screen to check foreign particles. A portion of the oil forced to the oil
filter and the remaining oil goes to lubricate various par of the engine.
An oil pressure gauge fitted in the line, indicates the oil pressure in the
lubricating system. About 3 kg/sq cm (45 psi) pressure is developed in
the lubrication system of a tractor engine, [f the oil pressure gauge
indicates no pressure in the line, there is some defect in the system
which must be checked immediately. Lubricating oil pump is a positive
displacement pump.
OIL FILTER: Lubricating oil in an engine becomes contaminated with various materials such as dirt,
metal particles and carbon. Oil filler removes the dirty elements of the oil in an effective way. It is a type of
Forced feed lubrication system
AG ENGG 243 lecture 7
8
strainer using cloth, paper, felt, wire screen or similar elements.
Some oil filter can be cleaned by washing, but in general old filters
are replaced by new filters at specified interval of time prescribed
by manufacturers. Wearing of parts, oil consumption and operating
cost of an engine can be considerably reduced by proper
maintenance of oil filters. Oil filters are of two types: (i) Full-flow
filter and (ii) By-pass filler.
(i) Full flow filter: In this filter the entire quantity of oil is forced
to circulate through it before it enters the engine. A spring loaded
valve is usually fitted in the filter as a protection device against oil
starvation in case of filter getting clogged. Filter element consists
of felt, cloth, paper and plastic. All these elements are replaceable
and should be changed after the recommended period.
(ii) By pass filter: In this type of filter, the supply lines are from
the pump and are connected to permit only a part of the oil.
Through the filter the balance oil reaches directly to the engine
parts. Over a period of operation, all the oil in the crankcase passes
through the filter.
Oil pressure gauge: Oil pressure gauge is used to indicate the oil pressure in the oil lines. It serves to warn
the operator of any irregularity in the system.
Crankcase breather: The engine crankcase is always fitted with some kind of breather, connecting the
space above the oil level with the outside atmosphere. The purpose of the breather is to prevent building up
pressure in the crankcase.
Relief valve: Relief valve is provided to control the quantity of oil circulation and to maintain correct
pressure in the lubricating system.
TROUBLES IN LUBRICATION SYSTEM
There are a few common troubles in lubrication system such as: (1) Excessive oil consumption (2) Low oil
pressure and (3) Excessive oil pressure-
Excessive oil consumption: When there is excessive oil consumption in the engine, the reasons arc : (a)
more oil goes to combustion chamber and gets burnt (b) some leakage occurs in some part of - the line and
(c) loss of oil in form of vapour through ventilating system. Oil can enter the combustion chamber through
rings and cylinder walls, worn piston rings and worn bearings.
Low oil pressure: Low oil pressure can result due to: (i) weak relief valve spring (ii) worn oil pump (iii)
cracked oil line (iv) obstruction in the oil lines (v) very thin oil and (vi) worn out bearings.
Care should be taken to remove these defects as far as possible to increase the oil pressure in the lubricating
system. Sometimes defective oil pressure indicator shows low oil pressure. This should be checked.
Excessive oil pressure: Excessive oil pressure may result due to : (i) stuck relief valve (ii) strong valve
spring (iii) clogged oil line and (iv) very heavy oil.
These defects should be removed to reduce the excessive oil pressure in the lubricating system. Sometimes
defective oil pressure indicator records high oil pressure. Care should be taken to check this defect.
CARE AND MAINTENANCE OF LUBRICATION SYSTEM
The following are few suggestions for good lubrication system:
• A good design of oil circulation system should be chosen.
• Correct grade of lubricant ensures long and trouble free service.
• Oil should be maintained at desired level in the oil chamber.
• Oil should be cleaned regularly and after specified period of use, old filters should be replaced by
new filters.
• Connections, pipings, valves and pressure gauge should be checked regularly.
• Oil should be changed regularly after specified interval of time. Before putting the new oil, the
crankcase should be cleaned and flushed well with a flushing oil.
• Precautions should be taken to keep the oil free from dust and water.

1 comment:

  1. Good Post and informative one. Thank you for sharing this good article.
    Lubricating Oil Pump

    ReplyDelete